Assignment 1 — Software Analysis

Deductive verification with Dafny

Claudio Maggioni

1 Choice of Sorting Algorithm

In order to choose I browse the implementations of some classical sorting algorithms to find one that
strikes a good tradeoff between ease-of-proof and a solid understanding of how it works on my part.

I decide to implement and verify the correctness of selection sort. The algorithm sorts a given list
in place with average and worst-case complexity O(n?). It works by iteratively finding either the
minimum or maximum element in the list, pushing it to respectively either the beginning or the end
of the list, and subsequently running the next iteration over the remaining n — 1 elements.

For the sake of this assignment, I choose to implement and analyze the variant where the minimum
element is computed. The pseudocode of selection sort is given in algorithm 1.

Algorithm 1 Selection sort

Require: a list of values
Ensure: a is sorted in-place

1: 50

2: while s < |a| do

3: m < argmin, a[z] for s < z < |a]
4: swap a[zx], als]

5: s+—s+1

6: end while

I choose this algorithm due to its procedural nature, since I feel more comfortable tackling loops
instead of recursive calls when writing verification code as we already covered them in class.

Additionally, given the algorithm incrementally places a ever-growing portion of sorted elements at
the beginning of the list as s increases, finding a loop invariant for the while loop shown in the
pseudocode should be simple as I can formalize this fact into a predicate.

1.1 Dafny implementation

To implement and verify the algorithm I use Dafny, a programming language that is verification-aware
and equipped with a static program verifier.

I first write an implementation of the pseudocode, listed below.


https://dafny.org/
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Listing 1 Implementation of selection sort in Dafny

method SelectionSort(a: array<int>)

{
if (a.Length == 0) {
return;

}

var s := 0;

while (s < a.Length - 1)
{

var min: int := s;

var i: int := s + 1;

while (i < a.Length)

{
if (ali] < a[min]) {
min := 1i;
i=1i+ 1;
}
als], almin] := almin], als];
s := s + 1;

The implementation is only slightly different from the pseudocode. The biggest difference lies in the
inner while loop at lines 14-20. This is just a procedural implementation of the assignment

m < arg min /[x] for s <z <
x

at line 3 of the pseudocode.

2 Verification

I now verify that the implementation in listing 1 is correct by adding a specification to it, namely
a method precondition, a method postcondition, and invariants and variants for the outer and inner
loop.

2.1 Method precondition and postcondition

Aside the array<int> type declaration, no other condition is needed to constrain the input parameter
a as a sorting algorithm should sort any list. Therefore, the method precondition is

requires true
which can just be omitted.

Regarding postconditions, as the assignment description suggests, we need to verify that the method
indeed sorts the values, while preserving the values in the list (i.e. without adding or deleting values).



We can define the sorted condition by saying that for any pair of monotonically increasing indices of a
the corresponding elements should be monotonically non-decreasing. This can be expressed with the
predicate:

predicate sorted(s: seq<int>)
{
forall i,j: int :: 0 <= i < j < [|s| ==> s[i] <= s[j]

}
According to advice given during lecture, we can express order-indifferent equality with the predicate:

predicate sameElements(a: seq<int>, b: seq<int>)
{

multiset(a) == multiset(b)
b

Therefore, the method signature including preconditions and postconditions is:

method SelectionSort(a: array<int>)
modifies a
ensures sorted(al..])
ensures sameElements(al..], old(al..]))

2.2 Quter loop variant and invariant

As mentioned already, the outer while loop in selection sort strongly relates with the incremental
selection of minimum values from the non-processed part of the list (i.e. for indices in [s,|a|)) and
them being moved to the beginning of the list in the correct order. Indeed, the outer loop maintains
two main properties:

o The processed elements (i.e. indices [0, s)) are sorted, as the elements in them are the minimum,
the second-minimum, the third-minimum and so on in this order;

e As all the processed elements have been selected as minimums, all of them are by definition
greater than or equal than the non-processed elements. Even if this property seems trivial, it
is quite important to ensure we can simply “append” elements to the processed portion as they
will for sure be greater than all the values in indices [0, s).

We can formalize these two facts respectively with two Dafny loop invariants on the outer while loop:

invariant s >= 1 ==> sorted(al[0..s]) // saying one item is sorted makes little sense
invariant forall i,j: int :: 0 <= i < s <= j < a.Length ==> ali] <= alj]

Since this loop has an index s iterating over the values in [0, |a| — 1] (note that we condiser the value
of s after loop termination as well) in steps of one the corresponding loop invariant and variant on
the index are quite straightforward!. Indeed, they are respectively:

invariant s <= a.Length - 1
decreases a.Length - s

Finally, since the only mutation performed on the list is the swap operation at line 22 of the code,
and a swap operation does not create or destroy values (either it swaps the position of two values or it
swaps the same position with itself — i.e. doing nothing), the order-indifferent equality predicate can
be simply added to this loop as an invariant

invariant sameElements(al..], old(al[..]))

However trivial of a fact as it is, Dafny requires it as an invariant to complete the proof of correctness,
and therefore we need to be a little redundant.

'We specify loop variants as well for completeness’ sake, even if Dafny is able to infer them in these circumnstances.



2.3 Inner loop variant and invariant

The inner loop implements the arg min expression used in the assignment at line 6 of the pseudocode.
From this fact we can easily say this loop does not mutate a in any array and therefore the order-
indifferent equality predicate holds:

invariant sameElements(al[..], old(al[..]))

Then, we can define the invariant for the index ¢, which iterates over the values in [s + 1, |a|] in single
increasing steps. We also know that the loop condition is based on the upper bound of this interfal,
so we can define the loop variant as well:

invariant s + 1 <= i <= a.LlLength
decreases a.Length - i

The only assignments to variable min are at line 11 and line 17 of the pseudocode, where min is
initialized to s and min is assigned the value of i respectively. Therefore we can say the value of min
at any point where is in scope is either s or € [s + 1, |a|) as it is assigned a possible value of i inside
the loop. We can formalize this fact with an invariant:

invariant s <= min < a.Length

Finally we can define a loop invariant for the values of the list element referenced by min. As the
loop scans for values referenced by ¢ less than a[min], updating min with the value of ¢ when this is
true, we can say that for all values smaller than ¢ in the scanned region a[min] indeed contains the
smallest value. This fact in predicate form results in the following loop invariant:

invariant forall j: int :: s <= j < i ==> a[min] <= a[j]

2.4 Dafny implementation with specification

The Dafny implementation of selection sort complete with the specification explained so far can be
found in the file selectionsort.dfy found in the repository:

gitlab.com:usi-si-teaching/msde/2022-2023 /software-analysis/maggioni/assigment-1

on the main branch.

3 Conclusions

Writing specifications with Dafny turned out to indeed be a challenge. Choosing the right predicates
and the right places to put them to satisfy Danfy and Boogie, its embedded theorem prover, was an
iterative process requiring many attempts and careful scrutiny at the reported errors.

As part of this process, I have introduced many assert and assume clauses to tackle the algorithm
portion by portion. As assumes are basically “cheats” w.r.t. the correctness proving process and
asserts were redundant, no such statement survives in my implementation.

Lines 3-5 of the algorithm’s implementation (a simple check of the list a being empty, and an immediate
return if this is the case) are not strictly needed according to the pseudocode. However, handling
this edge case specifically simplifies somewhat the process of determining the loop invariants as we
can assume in all further statements that the list is non-empty.

Indeed, the hardest step in the verification process was determining appropriate loop invariants to
satisfy the theorem proven. The need for redundant order-indifferent equality predicates in both loops
is quite counter-intuitive as those invariants merely re-state a property that is true across the method.


https://gitlab.com/usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assigment-1
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